Explorando a média ponderada ponderada exponencial A volatilidade é a medida mais comum de risco, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para medir o risco futuro.) Usamos os dados reais do estoque do Google para computar a volatilidade diária com base em 30 dias de dados de estoque. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel exponencialmente ponderada (EWMA). Histórico vs. Volatilidade implícita Primeiro, vamos colocar esta métrica em um pouco de perspectiva. Há duas abordagens gerais: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é um prólogo que medimos a história na esperança de que ela seja preditiva. A volatilidade implícita, por outro lado, ignora a história que resolve pela volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que implicitamente, uma estimativa consensual da volatilidade. Se focarmos apenas as três abordagens históricas (à esquerda acima), elas têm duas etapas em comum: Calcular a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcular o retorno periódico. Isso é tipicamente uma série de retornos diários onde cada retorno é expresso em termos continuamente compostos. Para cada dia, tomamos o log natural da razão dos preços das ações (ou seja, preço hoje dividido pelo preço de ontem, e assim por diante). Isso produz uma série de retornos diários, de u i para u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a Volatilidade para Avaliar o Risco Futuro), mostramos que, sob algumas simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Note que isto soma cada um dos retornos periódicos e depois divide esse total pela Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno ao quadrado é dado um peso igual. Portanto, se alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples é algo como isto: O EWMA Melhora na Variância Simples A fraqueza desta abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variância do que nos últimos meses. Esse problema é corrigido usando-se a média móvel exponencialmente ponderada (EWMA), na qual retornos mais recentes têm maior peso na variância. A média móvel exponencialmente ponderada (EWMA) introduz lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: Por exemplo, RiskMetrics TM, uma empresa de gestão de risco financeiro, tende a usar um lambda de 0,94 ou 94. Neste caso, o primeiro Mais recente) é ponderado por (1-0.94) (. 94) 0 6. O próximo retomo ao quadrado é simplesmente um lambda-múltiplo do peso anterior neste caso 6 multiplicado por 94 5.64. E o terceiro dia anterior peso é igual a (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser menor que um) do peso dos dias anteriores. Isso garante uma variância que é ponderada ou tendenciosa em direção a dados mais recentes. (Para saber mais, consulte a Planilha do Excel para a Volatilidade do Google.) A diferença entre simplesmente volatilidade e EWMA para o Google é mostrada abaixo. A volatilidade simples pesa efetivamente cada retorno periódico em 0.196, como mostrado na coluna O (tivemos dois anos de dados diários sobre os preços das ações, ou seja, 509 retornos diários e 1509 0.196). Mas observe que a Coluna P atribui um peso de 6, então 5.64, então 5.3 e assim por diante. Essa é a única diferença entre a variância simples e EWMA. Lembre-se: Depois de somarmos toda a série (na coluna Q) temos a variância, que é o quadrado do desvio padrão. Se queremos a volatilidade, precisamos nos lembrar de tomar a raiz quadrada dessa variância. Sua significativa: A variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para detalhes). Aparentemente, volatilidade Googles estabeleceu-se mais recentemente, portanto, uma variância simples pode ser artificialmente elevada. A variação de hoje é uma função da variação dos dias de Pior Você observará que nós necessitamos computar uma série longa de pesos exponencial declinando. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira convenientemente reduz a uma fórmula recursiva: Recursivo significa que as referências de variância de hoje (ou seja, é uma função da variação de dias anteriores). Você pode encontrar esta fórmula na planilha também, e produz o mesmo resultado exato que o cálculo de longhand Diz: A variância de hoje (sob EWMA) iguala a variância de ontem (ponderada por lambda) mais o retorno ao quadrado de ontem (pesado por um lambda negativo). Observe como estamos apenas adicionando dois termos juntos: ontem variância ponderada e ontem ponderado, retorno ao quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como o RiskMetrics 94) indica um declínio mais lento na série - em termos relativos, vamos ter mais pontos de dados na série e eles vão cair mais lentamente. Por outro lado, se reduzimos o lambda, indicamos maior decaimento: os pesos caem mais rapidamente e, como resultado direto da rápida decomposição, são usados menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar com sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque ea métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é todos os retornos obter o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo é diluído por dados distantes (menos relevantes). A média móvel exponencialmente ponderada (EWMA) melhora a variância simples atribuindo pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso a retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite o Bionic Turtle.) Artigo 50 é uma cláusula de negociação e liquidação no tratado da UE que delineia as medidas a serem tomadas para qualquer país que. Beta é uma medida da volatilidade, ou risco sistemático, de um título ou de uma carteira em comparação com o mercado como um todo. Um tipo de imposto incidente sobre ganhos de capital incorridos por pessoas físicas e jurídicas. Os ganhos de capital são os lucros que um investidor. Uma ordem para comprar um título igual ou inferior a um preço especificado. Uma ordem de limite de compra permite que traders e investidores especifiquem. Uma regra do Internal Revenue Service (IRS) que permite retiradas sem penalidade de uma conta IRA. A regra exige que. A primeira venda de ações por uma empresa privada para o público. Modelos de média móvel Em vez de usar valores passados da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados em um modelo de regressão. Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo de MA (q). Evidentemente, não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só irá alterar a escala da série, e não os padrões. É possível escrever qualquer modelo estacionário AR (p) como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e et amptext end Provided -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Os modelos Invertible não nos permitem simplesmente converter modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar dessas restrições ao estimar os modelos.2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de RA diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos de 1 a 10. O parâmetro ylab marca o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substitui-se a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Comparação, contraste e cálculo de abordagens paramétricas e não paramétricas para estimar a volatilidade condicional 8230 Incluindo: ABORDAGEM GARCH Incluindo: LISO EXPONENCIAL (EWMA) Suavização exponencial (paramétrica condicional) Os métodos modernos dão mais peso às informações recentes. Ambos EWMA e GARCH colocar mais peso em informações recentes. Além disso, como EWMA é um caso especial de GARCH, tanto EWMA e GARCH empregar suavização exponencial. GARCH (p, q) e em particular GARCH (1, 1) GARCH (p, q) é um modelo heteroscedástico condutor geral autorregressivo. Aspectos chaves incluem: Autoregressive (AR). A variância de amanhã (ou volatilidade) é uma função regredida da variância de hoje (8282). Ela regride sobre si mesma Condicional (C). A variância de amanhã depende da variância mais recente. Uma variância incondicional não dependeria da variância Heteroskedastic de hoje (H). As variações não são constantes, elas fluem ao longo do tempo, GARCH regride em 8220lagged8221 ou termos históricos. Os termos defasados são variância ou retornos quadrados. O modelo genérico GARCH (p, q) regressa em (p) retornos ao quadrado e (q) variâncias. Por conseguinte, GARCH (1, 1) 8220lags8221 ou regressa na última variância do período 8217s ao quadrado (isto é, apenas 1 retorno) e do último período 8217s (isto é, apenas 1 variância). GARCH (1, 1) dado pela seguinte equação. A mesma fórmula de GARCH (1, 1) pode ser dada com parâmetros gregos: Hull escreve a mesma equação de GARCH como: O primeiro termo (gVL) é importante porque VL é a variância média de longo prazo. Portanto, (gVL) é um produto: é a variância média ponderada de longo prazo. O modelo GARCH (1, 1) resolve a variância condicional como uma função de três variáveis (variância anterior, retorno anterior2 e variância de longo prazo): Persistência é um recurso embutido no modelo GARCH. Dica: Nas fórmulas acima, a persistência é (b c) ou (alfa-1 beta). Persistência refere-se a quão rapidamente (ou lentamente) a variância reverte ou 8220decays8221 em direção a sua média de longo prazo. A alta persistência equivale a decadência lenta e regressão lenta 8220 para a média 8221 a baixa persistência equivale à rápida decomposição e rápida reversão à média.8221 A persistência de 1,0 não implica nenhuma reversão média. Uma persistência de menos de 1,0 implica uma reversão para a média, 8221 onde uma menor persistência implica maior reversão para a média. Dica: Como acima, a soma dos pesos atribuídos à variância defasada e ao retângulo quadrado é a persistência (persistência bc). Uma alta persistência (superior a zero, mas inferior a um) implica uma reversão lenta para a média. Porém, se os pesos atribuídos à variância retardada e retardo ao quadrado forem maiores do que um, o modelo é não-estacionário. Se (bc) for maior que 1 (se bc gt 1) o modelo é não-estacionário e, de acordo com Hull, instável. Neste caso, é preferida a EWMA. Linda Allen diz sobre GARCH (1, 1): GARCH é tanto 8220compact8221 (isto é, relativamente simples) e notavelmente preciso. Os modelos GARCH predominam na pesquisa acadêmica. Muitas variações do modelo GARCH foram tentadas, mas poucas têm melhorado no original. A desvantagem do modelo GARCH é a sua não-linearidade sic Por exemplo: Resolva para a variância de longo prazo em GARCH (1,1) Considere a equação de GARCH (1, 1) abaixo: Suponha que: o parâmetro alfa 0.2, o parâmetro beta 0.7, E Observe que omega é 0,2, mas don8217t erro omega (0,2) para a variância de longo prazo Omega é o produto de gama ea variância de longo prazo. Portanto, se alfa beta 0,9, então gamma deve ser 0,1. Dado que o ômega é 0,2, sabemos que a variância de longo prazo deve ser 2,0 (0,2 184 0,1 2,0). GARCH (1,1): Mera diferença de notação entre Hull e Allen EWMA é um caso especial de GARCH (1,1) e GARCH (1,1) é um caso generalizado de EWMA. A diferença saliente é que GARCH inclui o termo adicional para reversão média e EWMA não tem uma reversão média. Aqui é como podemos obter de GARCH (1,1) para EWMA: Então deixamos um 0 e (bc) 1, de tal forma que a equação acima simplifica a: Isto é agora equivalente à fórmula para exponencialmente ponderada média móvel (EWMA): Em EWMA, o parâmetro lambda agora determina o 8220decay: 8221 um lambda que é próximo de um (lambda alto) exibe decadência lenta. O RiskMetricsTM Approach RiskMetrics é uma forma marcada da abordagem de média móvel exponencialmente ponderada (EWMA): O lambda ótimo (teórico) varia de acordo com a classe de ativos, mas o parâmetro ótimo global utilizado pelo RiskMetrics foi 0,94. Na prática, RiskMetrics usa apenas um fator de decadência para todas as séries: 183 0,94 para dados diários 183 0,97 para dados mensais (mês definido como 25 dias de negociação) Tecnicamente, os modelos diário e mensal são inconsistentes. No entanto, eles são fáceis de usar, eles aproximam o comportamento dos dados reais muito bem, e eles são robustos para misspecification. Nota: GARCH (1, 1), EWMA e RiskMetrics são paramétricos e recursivos. Resumo GARCH (1, 1) é um RiskMetrics generalizado e, inversamente, o RiskMetrics é GARCH (1, 1) é dado por: Os três parâmetros são pesos e, portanto, devem somar a um: Dica: Tenha cuidado com o primeiro termo no GARCH (1,1) onde a 0 e (bc) Equação de GARCH (1, 1): ômega () gama () (variância média de longo prazo). Se você for solicitado para a variância, talvez seja necessário dividir o peso para calcular a variância média. Determine quando e se um modelo GARCH ou EWMA deve ser usado na estimativa da volatilidade Na prática, as taxas de variância tendem a ser a média reverter, portanto, o modelo GARCH (1, 1) é teoricamente superior (8220 mais atraente do que o modelo EWMA). Lembre-se, é a grande diferença: GARCH adiciona o parâmetro que pondera a média de longo prazo e, portanto, incorpora reversão média. Dica: GARCH (1, 1) é preferido a menos que o primeiro parâmetro seja negativo (o que está implícito se alfa beta gt 1). Neste caso, GARCH (1,1) é instável e EWMA é preferido. Explique como as estimativas GARCH podem fornecer previsões mais precisas. A média móvel calcula a variância com base numa janela de observação, por ex. Nos dez dias anteriores, nos 100 dias anteriores. Existem dois problemas com a média móvel (MA): Característica fantasma: choques de volatilidade (aumentos repentinos) são abruptamente incorporados na métrica MA e, em seguida, quando a janela de arrasto passa, eles são abruptamente descartados do cálculo. Devido a isto a métrica de MA mudará em relação ao comprimento de janela escolhido As informações de tendência não são incorporadas As estimativas de GARCH melhoram estas fraquezas de duas maneiras: As observações mais recentes são atribuídas a pesos maiores. Isso supera fantasmas porque um choque de volatilidade impactará imediatamente a estimativa, mas sua influência irá desaparecer gradualmente à medida que o tempo passa. Um termo é adicionado para incorporar a reversão à média. Explicar como a persistência está relacionada à reversão à média. Dada a equação de GARCH (1, 1): A persistência é dada por: GARCH (1, 1) é instável se a persistência gt 1. A persistência de 1,0 não indica reversão média. Uma baixa persistência (por exemplo, 0,6) indica desintegração rápida e alta reversão para a média. Dica: GARCH (1, 1) tem três pesos atribuídos a três fatores. Persistência é a soma dos pesos atribuídos tanto à variância retardada quanto ao retardo ao quadrado. O outro peso é atribuído à variância de longo prazo. Portanto, se P (persistência) é alta, então G (reversão de média) é baixa: a série persistente não é fortemente reverting de média que exibe 8220slow decay8221 para o significar. Se P é baixo, então G deve ser alto: a série impersistente significa fortemente reverter, exibe 8220 desvanecimento acelerado 8221 em relação à média. A média, incondicional variação no modelo GARCH (1, 1) é dada por: Explique como EWMA sistematicamente descontos mais antigos dados, e identificar o RiskMetrics174 diária e mensal decadência fatores. A média móvel ponderada exponencialmente (EWMA) é dada por: A fórmula acima é uma simplificação recursiva da série 8220true8221 EWMA que é dada por: Na série EWMA, cada peso atribuído ao quadrado retorna é uma proporção constante do peso precedente. Especificamente, lambda (l) é a razão entre pesos vizinhos. Desta forma, os dados mais antigos são sistematicamente descontados. O desconto sistemático pode ser gradual (lento) ou abrupto, dependendo de lambda. Se lambda é elevado (por exemplo, 0,99), então o desconto é muito gradual. Se lambda for baixa (por exemplo 0,7), o desconto é mais abrupto. Os fatores de deterioração do RiskMetrics TM: 0,94 para dados diários 0,97 para dados mensais (mês definido como 25 dias de negociação) Explique por que as correlações de previsão podem ser mais importantes do que as volatilidades de previsão. Ao mensurar o risco de carteira, as correlações podem ser mais importantes do que a variabilidade individual de volatilidade do instrumento. Portanto, no que diz respeito ao risco de carteira, uma previsão de correlação pode ser mais importante do que as previsões individuais de volatilidade. Use GARCH (1, 1) para prever a volatilidade A taxa de variância futura esperada, em (t) períodos, é dada por: Por exemplo, suponha que uma estimativa de volatilidade atual (período n) é dada pelo seguinte GARCH (1, 1 ): Neste exemplo, alfa é o peso (0,1) atribuído ao retorno quadrado anterior (o retorno anterior era 4), beta é o peso (0,7) atribuído à variância anterior (0,0016). Qual é a volatilidade futura esperada, em dez dias (n 10) Primeiro, resolva a variância de longo prazo. Não é 0,00008 este termo é o produto da variância e seu peso. Como o peso deve ser 0,2 (1 - 0,1 -0,7), a variância de longo prazo 0,0004. Em segundo lugar, precisamos da variância atual (período n). Isso é quase dado acima: Agora podemos aplicar a fórmula para resolver a taxa de variância esperada futuro: Esta é a taxa de variância esperada, de modo que a volatilidade esperada é de aproximadamente 2,24. Observe como isso funciona: a volatilidade atual é de cerca de 3,69 ea volatilidade de longo prazo é 2. A projeção de 10 dias para a frente 8220fades8221 a taxa atual mais próxima da taxa de longo prazo. Previsão não paramétrica da volatilidade
No comments:
Post a Comment